Advertisement

Mechanisms of Drug-induced Liver Injury

Published:August 05, 2013DOI:https://doi.org/10.1016/j.cld.2013.07.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kaplowitz N.
        Idiosyncratic drug hepatotoxicity.
        Nat Rev Drug Discov. 2005; 4: 489-499
        • Holt M.
        • Ju C.
        Drug-induced liver injury.
        Handb Exp Pharmacol. 2010; : 3-27
        • Khandelwal N.
        • James L.P.
        • Sanders C.
        • et al.
        Unrecognized acetaminophen toxicity as a cause of indeterminate acute liver failure.
        Hepatology. 2011; 53: 567-576
        • Larson A.M.
        • Polson J.
        • Fontana R.J.
        • et al.
        Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study.
        Hepatology. 2005; 42: 1364-1372
        • Abboud G.
        • Kaplowitz N.
        Drug-induced liver injury.
        Drug Saf. 2007; 30: 277-294
        • Lammert C.
        • Einarsson S.
        • Saha C.
        • et al.
        Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: search for signals.
        Hepatology. 2008; 47: 2003-2009
        • Lammert C.
        • Bjornsson E.
        • Niklasson A.
        • et al.
        Oral medications with significant hepatic metabolism at higher risk for hepatic adverse events.
        Hepatology. 2010; 51: 615-620
        • Vercammen D.
        • Beyaert R.
        • Denecker G.
        • et al.
        Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor.
        J Exp Med. 1998; 187: 1477-1485
        • Declercq W.
        • Vanden Berghe T.
        • Vandenabeele P.
        RIP kinases at the crossroads of cell death and survival.
        Cell. 2009; 138: 229-232
        • Vandenabeele P.
        • Declercq W.
        • Van Herreweghe F.
        • et al.
        The role of the kinases RIP1 and RIP3 in TNF-induced necrosis.
        Sci Signal. 2010; 3: re4
        • He S.
        • Wang L.
        • Miao L.
        • et al.
        Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha.
        Cell. 2009; 137: 1100-1111
        • Chavez-Valdez R.
        • Martin L.J.
        • Flock D.L.
        • et al.
        Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia.
        Neuroscience. 2012; 219: 192-203
        • Cho Y.S.
        • Challa S.
        • Moquin D.
        • et al.
        Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation.
        Cell. 2009; 137: 1112-1123
        • Upton J.W.
        • Kaiser W.J.
        • Mocarski E.S.
        Virus inhibition of RIP3-dependent necrosis.
        Cell Host Microbe. 2010; 7: 302-313
        • Gunawan B.K.
        • Liu Z.X.
        • Han D.
        • et al.
        c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity.
        Gastroenterology. 2006; 131: 165-178
        • Shinohara M.
        • Ybanez M.D.
        • Win S.
        • et al.
        Silencing glycogen synthase kinase-3beta inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1.
        J Biol Chem. 2010; 285: 8244-8255
        • Nakagawa H.
        • Maeda S.
        • Hikiba Y.
        • et al.
        Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation.
        Gastroenterology. 2008; 135: 1311-1321
        • Sharma M.
        • Gadang V.
        • Jaeschke A.
        Critical role for mixed-lineage kinase 3 in acetaminophen-induced hepatotoxicity.
        Mol Pharmacol. 2012; 82: 1001-1007
        • Saberi B.
        • Shinohara M.
        • Ybanez M.D.
        • et al.
        Regulation of H(2)O(2)-induced necrosis by PKC and AMP-activated kinase signaling in primary cultured hepatocytes.
        Am J Physiol Cell Physiol. 2008; 295: C50-C63
        • Dawson S.
        • Stahl S.
        • Paul N.
        • et al.
        In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans.
        Drug Metab Dispos. 2012; 40: 130-138
        • Morgan R.E.
        • Trauner M.
        • van Staden C.J.
        • et al.
        Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
        Toxicol Sci. 2010; 118: 485-500
        • Kaspar J.W.
        • Niture S.K.
        • Jaiswal A.K.
        Nrf2:INrf2 (Keap1) signaling in oxidative stress.
        Free Radic Biol Med. 2009; 47: 1304-1309
        • Niture S.K.
        • Kaspar J.W.
        • Shen J.
        • et al.
        Nrf2 signaling and cell survival.
        Toxicol Appl Pharmacol. 2010; 244: 37-42
        • Kaspar J.W.
        • Niture S.K.
        • Jaiswal A.K.
        Antioxidant-induced INrf2 (Keap1) tyrosine 85 phosphorylation controls the nuclear export and degradation of the INrf2-Cul3-Rbx1 complex to allow normal Nrf2 activation and repression.
        J Cell Sci. 2012; 125: 1027-1038
        • Tong K.I.
        • Kobayashi A.
        • Katsuoka F.
        • et al.
        Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism.
        Biol Chem. 2006; 387: 1311-1320
        • Tong K.I.
        • Padmanabhan B.
        • Kobayashi A.
        • et al.
        Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response.
        Mol Cell Biol. 2007; 27: 7511-7521
        • Copple I.M.
        • Goldring C.E.
        • Jenkins R.E.
        • et al.
        The hepatotoxic metabolite of acetaminophen directly activates the Keap1-Nrf2 cell defense system.
        Hepatology. 2008; 48: 1292-1301
        • Copple I.M.
        • Goldring C.E.
        • Kitteringham N.R.
        • et al.
        The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity.
        Toxicology. 2008; 246: 24-33
        • Kaplowitz N.
        • Shinohara M.
        • Liu Z.X.
        • et al.
        How to protect against acetaminophen: don't ask for JUNK.
        Gastroenterology. 2008; 135: 1047-1051
        • Saitoh M.
        • Nishitoh H.
        • Fujii M.
        • et al.
        Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.
        EMBO J. 1998; 17: 2596-2606
        • Adler V.
        • Yin Z.
        • Fuchs S.Y.
        • et al.
        Regulation of JNK signaling by GSTp.
        EMBO J. 1999; 18: 1321-1334
        • Win S.
        • Than T.A.
        • Han D.
        • et al.
        c-Jun N-terminal kinase (JNK)-dependent acute liver injury from acetaminophen or tumor necrosis factor (TNF) requires mitochondrial Sab protein expression in mice.
        J Biol Chem. 2011; 286: 35071-35078
        • Wang C.
        • Youle R.J.
        The role of mitochondria in apoptosis*.
        Annu Rev Genet. 2009; 43: 95-118
        • Honda H.M.
        • Korge P.
        • Weiss J.N.
        Mitochondria and ischemia/reperfusion injury.
        Ann N Y Acad Sci. 2005; 1047: 248-258
        • Youle R.J.
        • Strasser A.
        The BCL-2 protein family: opposing activities that mediate cell death.
        Nat Rev Mol Cell Biol. 2008; 9: 47-59
        • Youle R.J.
        Cell biology. Cellular demolition and the rules of engagement.
        Science. 2007; 315: 776-777
        • Zhang D.W.
        • Shao J.
        • Lin J.
        • et al.
        RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis.
        Science. 2009; 325: 332-336
        • Wang Z.
        • Jiang H.
        • Chen S.
        • et al.
        The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways.
        Cell. 2012; 148: 228-243
        • Rashed M.S.
        • Streeter A.J.
        • Nelson S.D.
        Investigations of the N-hydroxylation of 3'-hydroxyacetanilide, a non-hepatotoxic positional isomer of acetaminophen.
        Drug Metab Dispos. 1989; 17: 355-359
        • Rashed M.S.
        • Nelson S.D.
        Characterization of glutathione conjugates of reactive metabolites of 3'-hydroxyacetanilide, a nonhepatotoxic positional isomer of acetaminophen.
        Chem Res Toxicol. 1989; 2: 41-45
        • Rashed M.S.
        • Myers T.G.
        • Nelson S.D.
        Hepatic protein arylation, glutathione depletion, and metabolite profiles of acetaminophen and a non-hepatotoxic regioisomer, 3'-hydroxyacetanilide, in the mouse.
        Drug Metab Dispos. 1990; 18: 765-770
        • Kuwana T.
        • Mackey M.R.
        • Perkins G.
        • et al.
        Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane.
        Cell. 2002; 111: 331-342
        • Ott M.
        • Robertson J.D.
        • Gogvadze V.
        • et al.
        Cytochrome c release from mitochondria proceeds by a two-step process.
        Proc Natl Acad Sci U S A. 2002; 99: 1259-1263
        • Lee Y.H.
        • Chung M.C.
        • Lin Q.
        • et al.
        Troglitazone-induced hepatic mitochondrial proteome expression dynamics in heterozygous Sod2(+/−) mice: two-stage oxidative injury.
        Toxicol Appl Pharmacol. 2008; 231: 43-51
        • Kashimshetty R.
        • Desai V.G.
        • Kale V.M.
        • et al.
        Underlying mitochondrial dysfunction triggers flutamide-induced oxidative liver injury in a mouse model of idiosyncratic drug toxicity.
        Toxicol Appl Pharmacol. 2009; 238: 150-159
        • Fujimoto K.
        • Kumagai K.
        • Ito K.
        • et al.
        Sensitivity of liver injury in heterozygous Sod2 knockout mice treated with troglitazone or acetaminophen.
        Toxicol Pathol. 2009; 37: 193-200
        • Youle R.J.
        • van der Bliek A.M.
        Mitochondrial fission, fusion, and stress.
        Science. 2012; 337: 1062-1065
        • Jin S.M.
        • Youle R.J.
        PINK1- and Parkin-mediated mitophagy at a glance.
        J Cell Sci. 2012; 125: 795-799
        • Jin S.M.
        • Lazarou M.
        • Wang C.
        • et al.
        Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL.
        J Cell Biol. 2010; 191: 933-942
        • Lazarou M.
        • Narendra D.P.
        • Jin S.M.
        • et al.
        PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding.
        J Cell Biol. 2013; 200: 163-172
        • Narendra D.P.
        • Jin S.M.
        • Tanaka A.
        • et al.
        PINK1 is selectively stabilized on impaired mitochondria to activate Parkin.
        PLoS Biol. 2010; 8: e1000298
        • Suen D.F.
        • Norris K.L.
        • Youle R.J.
        Mitochondrial dynamics and apoptosis.
        Genes Dev. 2008; 22: 1577-1590
        • Montessuit S.
        • Somasekharan S.P.
        • Terrones O.
        • et al.
        Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization.
        Cell. 2010; 142: 889-901
        • Kaplowitz N.
        Dealing with stress.
        Hepatology. 2012; 55: 3-13
        • Hautekeete M.L.
        • Horsmans Y.
        • Van Waeyenberge C.
        • et al.
        HLA association of amoxicillin-clavulanate–induced hepatitis.
        Gastroenterology. 1999; 117: 1181-1186
        • Lucena M.I.
        • Molokhia M.
        • Shen Y.
        • et al.
        Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles.
        Gastroenterology. 2011; 141: 338-347
        • O'Donohue J.
        • Oien K.A.
        • Donaldson P.
        • et al.
        Co-amoxiclav jaundice: clinical and histological features and HLA class II association.
        Gut. 2000; 47: 717-720
        • Singer J.B.
        • Lewitzky S.
        • Leroy E.
        • et al.
        A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury.
        Nat Genet. 2010; 42: 711-714
        • Daly A.K.
        • Donaldson P.T.
        • Bhatnagar P.
        • et al.
        HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin.
        Nat Genet. 2009; 41: 816-819
        • Kubes P.
        • Mehal W.Z.
        Sterile inflammation in the liver.
        Gastroenterology. 2012; 143: 1158-1172
        • Antoine D.J.
        • Williams D.P.
        • Kipar A.
        • et al.
        High-mobility group box-1 protein and keratin-18, circulating serum proteins informative of acetaminophen-induced necrosis and apoptosis in vivo.
        Toxicol Sci. 2009; 112: 521-531
        • Luyendyk J.P.
        • Maddox J.F.
        • Cosma G.N.
        • et al.
        Ranitidine treatment during a modest inflammatory response precipitates idiosyncrasy-like liver injury in rats.
        J Pharmacol Exp Ther. 2003; 307: 9-16
        • Shaw P.J.
        • Hopfensperger M.J.
        • Ganey P.E.
        • et al.
        Lipopolysaccharide and trovafloxacin coexposure in mice causes idiosyncrasy-like liver injury dependent on tumor necrosis factor-alpha.
        Toxicol Sci. 2007; 100: 259-266
        • Czaja A.J.
        Drug-induced autoimmune-like hepatitis.
        Dig Dis Sci. 2011; 56: 958-976