Advertisement

Hepatocellular Carcinoma

Role of Pathology in the Era of Precision Medicine
Published:September 03, 2020DOI:https://doi.org/10.1016/j.cld.2020.07.010

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marrero J.A.
        • Kulik L.M.
        • Sirlin C.B.
        • et al.
        Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American association for the study of liver diseases.
        Hepatology. 2018; 68: 723-750
        • Wu X.
        • Li J.
        • Gassa A.
        • et al.
        Circulating tumor DNA as an emerging liquid biopsy biomarker for early diagnosis and therapeutic monitoring in hepatocellular carcinoma.
        Int J Biol Sci. 2020; 16: 1551-1562
        • Ye Q.
        • Ling S.
        • Zheng S.
        • et al.
        Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA.
        Mol Cancer. 2019; 18: 114
        • Mocan T.
        • Simao A.L.
        • Castro R.E.
        • et al.
        Liquid biopsies in hepatocellular carcinoma: are we winning?.
        J Clin Med. 2020; 9: 1541
        • Park Y.N.
        • Yang C.P.
        • Fernandez G.J.
        • et al.
        Neoangiogenesis and sinusoidal "capillarization" in dysplastic nodules of the liver.
        Am J Surg Pathol. 1998; 22: 656-662
        • Hytiroglou P.
        • Park Y.N.
        • Krinsky G.
        • et al.
        Hepatic precancerous lesions and small hepatocellular carcinoma.
        Gastroenterol Clin North Am. 2007; 36 (vii): 867-887
        • Park Y.N.
        Update on precursor and early lesions of hepatocellular carcinomas.
        Arch Pathol Lab Med. 2011; 135: 704-715
        • Niu Z.S.
        • Niu X.J.
        • Wang W.H.
        • et al.
        Latest developments in precancerous lesions of hepatocellular carcinoma.
        World J Gastroenterol. 2016; 22: 3305-3314
        • International Consensus Group for Hepatocellular Neoplasia
        Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia.
        Hepatology. 2009; 49: 658-664
        • Torbenson M.S.
        • Ng I.
        • Park Y.N.
        • et al.
        Hepatocellular carcinoma.
        5th edition. IARC, Lyon (France)2019
        • Marginean E.C.
        • Gown A.M.
        • Jain D.
        Diagnostic approach to hepatic mass lesions and role of immunohistochemistry.
        Surg Pathol Clin. 2013; 6: 333-365
        • Roncalli M.
        • Terracciano L.
        • Di Tommaso L.
        • et al.
        Liver precancerous lesions and hepatocellular carcinoma: the histology report.
        Dig Liver Dis. 2011; 43: S361-S372
        • Park Y.N.
        • Kojiro M.
        • Di Tommaso L.
        • et al.
        Ductular reaction is helpful in defining early stromal invasion, small hepatocellular carcinomas, and dysplastic nodules.
        Cancer. 2007; 109: 915-923
        • Choi W.T.
        • Ramachandran R.
        • Kakar S.
        Immunohistochemical approach for the diagnosis of a liver mass on small biopsy specimens.
        Hum Pathol. 2017; 63: 1-13
        • Di Tommaso L.
        • Franchi G.
        • Park Y.N.
        • et al.
        Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis.
        Hepatology. 2007; 45: 725-734
        • Di Tommaso L.
        • Destro A.
        • Seok J.Y.
        • et al.
        The application of markers (HSP70 GPC3 and GS) in liver biopsies is useful for detection of hepatocellular carcinoma.
        J Hepatol. 2009; 50: 746-754
        • Tremosini S.
        • Forner A.
        • Boix L.
        • et al.
        Prospective validation of an immunohistochemical panel (glypican 3, heat shock protein 70 and glutamine synthetase) in liver biopsies for diagnosis of very early hepatocellular carcinoma.
        Gut. 2012; 61: 1481-1487
        • Chuma M.
        • Sakamoto M.
        • Yamazaki K.
        • et al.
        Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma.
        Hepatology. 2003; 37: 198-207
        • Di Tommaso L.
        • Destro A.
        • Fabbris V.
        • et al.
        Diagnostic accuracy of clathrin heavy chain staining in a marker panel for the diagnosis of small hepatocellular carcinoma.
        Hepatology. 2011; 53: 1549-1557
        • Yan B.C.
        • Gong C.
        • Song J.
        • et al.
        Arginase-1: a new immunohistochemical marker of hepatocytes and hepatocellular neoplasms.
        Am J Surg Pathol. 2010; 34: 1147-1154
        • Chandan V.S.
        • Shah S.S.
        • Torbenson M.S.
        • et al.
        Arginase-1 is frequently positive in hepatoid adenocarcinomas.
        Hum Pathol. 2016; 55: 11-16
        • Fujiwara M.
        • Kwok S.
        • Yano H.
        • et al.
        Arginase-1 is a more sensitive marker of hepatic differentiation than HepPar-1 and glypican-3 in fine-needle aspiration biopsies.
        Cancer Cytopathol. 2012; 120: 230-237
        • Clark I.
        • Shah S.S.
        • Moreira R.
        • et al.
        A subset of well-differentiated hepatocellular carcinomas are Arginase-1 negative.
        Hum Pathol. 2017; 69: 90-95
        • Obiorah I.E.
        • Chahine J.
        • Park B.U.
        • et al.
        Well differentiated arginase-1 negative hepatocellular carcinoma.
        Transl Gastroenterol Hepatol. 2019; 4: 66
        • Nguyen T.
        • Phillips D.
        • Jain D.
        • et al.
        Comparison of 5 immunohistochemical markers of hepatocellular differentiation for the diagnosis of hepatocellular carcinoma.
        Arch Pathol Lab Med. 2015; 139: 1028-1034
        • Krings G.
        • Ramachandran R.
        • Jain D.
        • et al.
        Immunohistochemical pitfalls and the importance of glypican 3 and arginase in the diagnosis of scirrhous hepatocellular carcinoma.
        Mod Pathol. 2013; 26: 782-791
        • Fan Z.
        • de Rijn M.V.
        • Montgomery K.
        • et al.
        Hep Par 1 antibody stain for of hepatocellular carcinoma: the differential diagnosis 676 tumors tested using tissue microarrays and conventional tissue sections.
        Mod Pathol. 2003; 16: 137-144
        • Giedl J.
        • Buttner-Herold M.
        • Wach S.
        • et al.
        Hepatocyte differentiation markers in adenocarcinoma of the prostate: hepatocyte paraffin 1 but not arginase-1 is specifically expressed in a subset of prostatic adenocarcinoma.
        Hum Pathol. 2016; 55: 101-107
        • Morrison C.
        • Marsh W.
        • Frankel W.L.
        A comparison of CD10 to pCEA, MOC-31, and hepatocyte for the distinction of malignant tumors in the liver.
        Mod Pathol. 2002; 15: 1279-1287
        • Kakar S.
        • Gown A.M.
        • Goodman Z.D.
        • et al.
        Best practices in diagnostic immunohistochemistry: hepatocellular carcinoma versus metastatic neoplasms.
        Arch Pathol Lab Med. 2007; 131: 1648-1654
        • Chu P.G.G.
        • Ishizawa S.
        • Wu E.
        • et al.
        Hepatocyte antigen as a marker of hepatocellular carcinoma - an immunohistochemical comparison to carcinoembryonic antigen, CD10, and alpha-fetoprotein.
        Am J Surg Pathol. 2002; 26: 978-988
        • Ferrone C.R.
        • Ting D.T.
        • Shahid M.
        • et al.
        The ability to diagnose intrahepatic cholangiocarcinoma definitively using novel branched DNA-enhanced albumin RNA in situ hybridization technology.
        Ann Surg Oncol. 2016; 23: 290-296
        • Shahid M.
        • Mubeen A.
        • Tse J.
        • et al.
        Branched chain in situ hybridization for albumin as a marker of hepatocellular differentiation: evaluation of manual and automated in situ hybridization platforms.
        Am J Surg Pathol. 2015; 39: 25-34
        • Lin F.
        • Shi J.H.
        • Wang H.L.L.
        • et al.
        Detection of albumin expression by RNA in situ hybridization is a sensitive and specific method for identification of hepatocellular carcinomas and intrahepatic cholangiocarcinomas.
        Am J Clin Pathol. 2018; 150: 58-64
        • Nasir A.
        • Lehrke H.D.
        • Mounajjed T.
        • et al.
        Albumin in situ hybridization can Be positive in adenocarcinomas and other tumors from diverse sites.
        Am J Clin Pathol. 2019; 152: 190-199
        • Goumard C.
        • Desbois-Mouthon C.
        • Wendum D.
        • et al.
        Low levels of microsatellite instability at simple repeated sequences commonly occur in human hepatocellular carcinoma.
        Cancer Genomics Proteomics. 2017; 14: 329-339
        • Harding J.J.
        • Nandakumar S.
        • Armenia J.
        • et al.
        Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies.
        Clin Cancer Res. 2019; 25: 2116-2126
        • Llovet J.M.
        • Montal R.
        • Sia D.
        • et al.
        Molecular therapies and precision medicine for hepatocellular carcinoma.
        Nat Rev Clin Oncol. 2018; 15: 599-616
        • Calderaro J.
        • Rousseau B.
        • Amaddeo G.
        • et al.
        Programmed death ligand 1 expression in hepatocellular carcinoma: relationship with clinical and pathological features.
        Hepatology. 2016; 64: 2038-2046
        • Chen G.
        • Chen Y.C.
        • Reis B.
        • et al.
        Combining expression of GPC3 in tumors and CD16 on NK cells from peripheral blood to identify patients responding to codrituzumab.
        Oncotarget. 2018; 9: 10436-10444
        • Ortiz M.V.
        • Roberts S.S.
        • Glade Bender J.
        • et al.
        Immunotherapeutic targeting of GPC3 in pediatric solid embryonal tumors.
        Front Oncol. 2019; 9: 108
        • Uenishi T.
        • Kubo S.
        • Yamamoto T.
        • et al.
        Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence.
        Cancer Sci. 2003; 94: 851-857
        • Feng J.
        • Zhu R.
        • Chang C.
        • et al.
        CK19 and glypican 3 expression profiling in the prognostic indication for patients with HCC after surgical resection.
        PLoS One. 2016; 11: e0151501
        • Miltiadous O.
        • Sia D.
        • Hoshida Y.
        • et al.
        Progenitor cell markers predict outcome of patients with hepatocellular carcinoma beyond Milan criteria undergoing liver transplantation.
        J Hepatol. 2015; 63: 1368-1377
        • Torbenson M.S.
        Morphologic subtypes of hepatocellular carcinoma.
        Gastroenterol Clin North Am. 2017; 46: 365-391
        • Ward S.C.
        • Huang J.T.
        • Tickoo S.K.
        • et al.
        Fibrolamellar carcinoma of the liver exhibits immunohistochemical evidence of both hepatocyte and bile duct differentiation.
        Mod Pathol. 2010; 23: 1180-1190
        • Ross H.M.
        • Daniel H.D.
        • Vivekanandan P.
        • et al.
        Fibrolamellar carcinomas are positive for CD68.
        Mod Pathol. 2011; 24: 390-395
        • Abdul-Al H.M.
        • Wang G.
        • Makhlouf H.R.
        • et al.
        Fibrolamellar hepatocellular carcinoma: an immunohistochemical comparison with conventional hepatocellular carcinoma.
        Int J Surg Pathol. 2010; 18: 313-318
        • Honeyman J.N.
        • Simon E.P.
        • Robine N.
        • et al.
        Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma.
        Science. 2014; 343: 1010-1014
        • Graham R.P.
        • Jin L.
        • Knutson D.L.
        • et al.
        DNAJB1-PRKACA is specific for fibrolamellar carcinoma.
        Mod Pathol. 2015; 28: 822-829
        • Vyas M.
        • Hechtman J.F.
        • Zhang Y.
        • et al.
        DNAJB1-PRKACA fusions occur in oncocytic pancreatic and biliary neoplasms and are not specific for fibrolamellar hepatocellular carcinoma.
        Mod Pathol. 2020; 33: 648-656
        • Singhi A.D.
        • Wood L.D.
        • Parks E.
        • et al.
        Recurrent rearrangements in PRKACA and PRKACB in intraductal oncocytic papillary neoplasms of the pancreas and bile duct.
        Gastroenterology. 2020; 158: 573-582.e2
        • Abou-Alfa G.K.
        • Mayer R.
        • Venook A.P.
        • et al.
        Phase II multicenter, open-label study of oral ENMD-2076 for the treatment of patients with advanced fibrolamellar carcinoma.
        Oncologist. 2020; ([Epub ahead of print])
        • Kurogi M.
        • Nakashima O.
        • Miyaaki H.
        • et al.
        Clinicopathological study of scirrhous hepatocellular carcinoma.
        J Gastroenterol Hepatol. 2006; 21: 1470-1477
        • Matsuura S.
        • Aishima S.
        • Taguchi K.
        • et al.
        'Scirrhous' type hepatocellular carcinomas: a special reference to expression of cytokeratin 7 and hepatocyte paraffin 1.
        Histopathology. 2005; 47: 382-390
        • Lee J.H.
        • Choi M.S.
        • Gwak G.Y.
        • et al.
        Clinicopathologic characteristics and long-term prognosis of scirrhous hepatocellular carcinoma.
        Dig Dis Sci. 2012; 57: 1698-1707
        • Jernigan P.L.
        • Wima K.
        • Hanseman D.J.
        • et al.
        Natural history and treatment trends in hepatocellular carcinoma subtypes: insights from a national cancer registry.
        J Surg Oncol. 2015; 112: 872-876
        • Kim S.H.
        • Lim H.K.
        • Lee W.J.
        • et al.
        Scirrhous hepatocellular carcinoma: comparison with usual hepatocellular carcinoma based on CT-pathologic features and long-term results after curative resection.
        Eur J Radiol. 2009; 69: 123-130
        • Lee J.S.
        • Yoo J.E.
        • Kim H.
        • et al.
        Tumor stroma with senescence-associated secretory phenotype in steatohepatitic hepatocellular carcinoma.
        PLoS One. 2017; 12: e0171922
        • Salomao M.
        • Remotti H.
        • Vaughan R.
        • et al.
        The steatohepatitic variant of hepatocellular carcinoma and its association with underlying steatohepatitis.
        Hum Pathol. 2012; 43: 737-746
        • Shibahara J.
        • Ando S.
        • Sakamoto Y.
        • et al.
        Hepatocellular carcinoma with steatohepatitic features: a clinicopathological study of Japanese patients.
        Histopathology. 2014; 64: 951-962
        • Calderaro J.
        • Couchy G.
        • Imbeaud S.
        • et al.
        Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification.
        J Hepatol. 2017; 67: 727-738
        • Ando S.
        • Shibahara J.
        • Hayashi A.
        • et al.
        beta-catenin alteration is rare in hepatocellular carcinoma with steatohepatitic features: immunohistochemical and mutational study.
        Virchows Arch. 2015; 467: 535-542
        • Deniz K.
        • Moreira R.K.
        • Yeh M.M.
        • et al.
        Steatohepatitis-like changes in focal nodular hyperplasia, A finding to distinguish from steatohepatitic variant of hepatocellular carcinoma.
        Am J Surg Pathol. 2017; 41: 277-281
        • Jain D.
        The steatohepatitic variant of hepatocellular carcinoma and its association with underlying steatohepatitis.
        Hum Pathol. 2012; 43 ([author reply: 769–0]): 769
        • Jeon Y.
        • Benedict M.
        • Taddei T.
        • et al.
        Macrotrabecular hepatocellular carcinoma: an aggressive subtype of hepatocellular carcinoma.
        Am J Surg Pathol. 2019; 43: 943-948
        • Ziol M.
        • Pote N.
        • Amaddeo G.
        • et al.
        Macrotrabecular-massive hepatocellular carcinoma: a distinctive histological subtype with clinical relevance.
        Hepatology. 2018; 68: 103-112
        • Rebouissou S.
        • Nault J.C.
        Advances in molecular classification and precision oncology in hepatocellular carcinoma.
        J Hepatol. 2020; 72: 215-229
        • Calderaro J.
        • Meunier L.
        • Nguyen C.T.
        • et al.
        ESM1 as a marker of macrotrabecular-massive hepatocellular carcinoma.
        Clin Cancer Res. 2019; 25: 5859-5865
        • Wada Y.
        • Nakashima O.
        • Kutami R.
        • et al.
        Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration.
        Hepatology. 1998; 27: 407-414
        • Chan A.W.
        • Tong J.H.
        • Pan Y.
        • et al.
        Lymphoepithelioma-like hepatocellular carcinoma: an uncommon variant of hepatocellular carcinoma with favorable outcome.
        Am J Surg Pathol. 2015; 39: 304-312
        • Labgaa I.
        • Stueck A.
        • Ward S.C.
        Lymphoepithelioma-like carcinoma in liver.
        Am J Pathol. 2017; 187: 1438-1444
        • Chan A.W.
        • Zhang Z.
        • Chong C.C.
        • et al.
        Genomic landscape of lymphoepithelioma-like hepatocellular carcinoma.
        J Pathol. 2019; 249: 166-172
        • Shimakawa T.
        • Asaka S.
        • Usuda A.
        • et al.
        Granulocyte-colony stimulating factor (G-CSF)-producing esophageal squamous cell carcinoma: a case report.
        Int Surg. 2014; 99: 280-285
        • Sato T.
        • Omura M.
        • Saito J.
        • et al.
        Neutrophilia associated with anaplastic carcinoma of the thyroid: production of macrophage colony-stimulating factor (M-CSF) and interleukin-6.
        Thyroid. 2000; 10: 1113-1118
        • Vinzens S.
        • Zindel J.
        • Zweifel M.
        • et al.
        Granulocyte colony-stimulating factor producing anaplastic carcinoma of the pancreas: case report and review of the literature.
        Anticancer Res. 2017; 37: 223-228
        • Araki K.
        • Kishihara F.
        • Takahashi K.
        • et al.
        Hepatocellular carcinoma producing a granulocyte colony-stimulating factor: report of a resected case with a literature review.
        Liver Int. 2007; 27: 716-721
        • Kohno M.
        • Shirabe K.
        • Mano Y.
        • et al.
        Granulocyte colony-stimulating-factor-producing hepatocellular carcinoma with extensive sarcomatous changes: report of a case.
        Surg Today. 2013; 43: 439-445
        • Amano H.
        • Itamoto T.
        • Emoto K.
        • et al.
        Granulocyte colony-stimulating factor-producing combined hepatocellular/cholangiocellular carcinoma with sarcomatous change.
        J Gastroenterol. 2005; 40: 1158-1159
        • Liu Z.
        • Ma W.
        • Li H.
        • et al.
        Clinicopathological and prognostic features of primary clear cell carcinoma of the liver.
        Hepatol Res. 2008; 38: 291-299
        • Ji S.P.
        • Li Q.
        • Dong H.
        Therapy and prognostic features of primary clear cell carcinoma of the liver.
        World J Gastroenterol. 2010; 16: 764-769
        • Yang S.H.
        • Watanabe J.
        • Nakashima O.
        • et al.
        Clinicopathologic study on clear cell hepatocellular carcinoma.
        Pathol Int. 1996; 46: 503-509
        • Murakata L.A.
        • Ishak K.G.
        • Nzeako U.C.
        Clear cell carcinoma of the liver: a comparative immunohistochemical study with renal clear cell carcinoma.
        Mod Pathol. 2000; 13: 874-881
        • Okuda K.
        • Peters R.L.
        • Simson I.W.
        Gross anatomic features of hepatocellular carcinoma from three disparate geographic areas. Proposal of new classification.
        Cancer. 1984; 54: 2165-2173
        • Jakate S.
        • Yabes A.
        • Giusto D.
        • et al.
        Diffuse cirrhosis-like hepatocellular carcinoma: a clinically and radiographically undetected variant mimicking cirrhosis.
        Am J Surg Pathol. 2010; 34: 935-941
        • Ng I.O.L.
        • Guan X.Y.
        • Poon R.T.P.
        • et al.
        Determination of the molecular relationship between multiple tumour nodules in hepatocellular carcinoma differentiates multicentric origin from intrahepatic metastasis.
        J Pathol. 2003; 199: 345-353
        • Morimoto O.
        • Nagano H.
        • Sakon M.
        • et al.
        Diagnosis of intrahepatic metastasis and multicentric carcinogenesis by microsatellite loss of heterozygosity in patients with multiple and recurrent hepatocellular carcinomas.
        J Hepatol. 2003; 39: 215-221
        • Habibollahi P.
        • Shamchi S.P.
        • Tondon R.
        • et al.
        Combination of neoadjuvant transcatheter arterial chemoembolization and orthotopic liver transplantation for the treatment of cirrhotomimetic hepatocellular carcinoma.
        J Vasc Interv Radiol. 2018; 29: 237-243
        • Wood L.D.
        • Heaphy C.M.
        • Daniel H.D.
        • et al.
        Chromophobe hepatocellular carcinoma with abrupt anaplasia: a proposal for a new subtype of hepatocellular carcinoma with unique morphological and molecular features.
        Mod Pathol. 2013; 26: 1586-1593
        • Tefera J.
        • Revzin M.
        • Chapiro J.
        • et al.
        Fibronodular hepatocellular carcinoma-a new variant of liver cancer: clinical, pathological and radiological correlation.
        J Clin Pathol. 2020; https://doi.org/10.1136/jclinpath-2020-206574
        • Sempoux C.
        • Kakar S.
        • Kondo F.
        • et al.
        Combined hepatocellular-cholangiocarcinoma and undifferentiated primary liver carcinoma.
        5th edition. IARC, Lyon (France)2019
        • Brunt E.
        • Aishima S.
        • Clavien P.A.
        • et al.
        cHCC-CCA: consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation.
        Hepatology. 2018; 68: 113-126
        • Sciarra A.
        • Park Y.N.
        • Sempoux C.
        Updates in the diagnosis of combined hepatocellular-cholangiocarcinoma.
        Hum Pathol. 2020; 96: 48-55
        • Jarnagin W.R.
        • Weber S.
        • Tickoo S.K.
        • et al.
        Combined hepatocellular and cholangiocarcinoma: demographic, clinical, and prognostic factors.
        Cancer. 2002; 94: 2040-2046
        • Lin G.
        • Toh C.H.
        • Wu R.C.
        • et al.
        Combined hepatocellular cholangiocarcinoma: prognostic factors investigated by computed tomography/magnetic resonance imaging.
        Int J Clin Pract. 2008; 62: 1199-1205
        • Komuta M.
        • Yeh M.M.
        A review on the update of combined hepatocellular cholangiocarcinoma.
        Semin Liver Dis. 2020; 40: 124-130
        • Cancer Genome Atlas Research Network
        Comprehensive and integrative genomic characterization of hepatocellular carcinoma.
        Cell. 2017; 169: 1327-1341.e3
        • Tan P.S.
        • Nakagawa S.
        • Goossens N.
        • et al.
        Clinicopathological indices to predict hepatocellular carcinoma molecular classification.
        Liver Int. 2016; 36: 108-118
        • Nault J.C.
        • Martin Y.
        • Caruso S.
        • et al.
        Clinical impact of genomic diversity from early to advanced hepatocellular carcinoma.
        Hepatology. 2020; 71: 164-182
        • Nault J.C.
        • De Reynies A.
        • Villanueva A.
        • et al.
        A hepatocellular carcinoma 5-gene score associated with survival of patients after liver resection.
        Gastroenterology. 2013; 145: 176-187